Характеристики, функции, структура и компоненты цитоскелета



цитоскелет Это клеточная структура, состоящая из нитей. Он рассредоточен по цитоплазме, и его функция в основном заключается в поддержке, чтобы поддерживать архитектуру и клеточную форму. Конструктивно он состоит из трех типов волокон, классифицированных по размеру.

Это актиновые волокна, промежуточные нити и микротрубочки. Каждый из них предоставляет определенное свойство сети. Внутренняя часть ячейки - это среда, в которой происходит перемещение и перемещение материалов. Цитоскелет опосредует эти внутриклеточные движения.

Например, органеллы - такие как митохондрии или аппарат Гольджи - статичны в клеточной среде; они движутся, используя цитоскелет в качестве пути.

Хотя цитоскелет явно преобладает у эукариотических организмов, аналогичная структура была отмечена у прокариот.

индекс

  • 1 Общая характеристика
  • 2 функции
    • 2.1 Форма
    • 2.2 Движение и клеточные узлы
  • 3 Структура и компоненты
    • 3.1 Нити актина
    • 3.2 Промежуточные нити
    • 3.3 Микротрубочки
  • 4 Другие последствия цитоскелета
    • 4.1 В бактериях
    • 4.2 При раке
  • 5 ссылок

Общие характеристики

Цитоскелет представляет собой чрезвычайно динамичную структуру, которая представляет собой «молекулярные леса». Три типа нитей, которые составляют его, являются повторяющимися единицами, которые могут формировать очень различные структуры, в зависимости от способа, которым эти фундаментальные единицы объединены.

Если мы хотим создать аналогию с человеческим скелетом, цитоскелет эквивалентен костной системе и, кроме того, мышечной системе..

Однако они не идентичны кости, потому что компоненты могут быть собраны и дезинтегрированы, что позволяет изменять форму и придает клетке пластичность. Компоненты цитоскелета не растворимы в моющих средствах.

функции

форма

Как следует из названия, «интуитивная» функция цитоскелета заключается в обеспечении стабильности и формы клетки. Когда нити объединяются в этой сложной сети, это дает клетке свойство сопротивляться деформации.

Без этой структуры клетка не сможет поддерживать определенную форму. Тем не менее, это динамическая структура (в отличие от человеческого скелета), которая дает клеткам свойство изменять форму.

Движение и клеточные развязки

Многие клеточные компоненты связаны с этой сетью волокон, рассеянных в цитоплазме, способствуя их пространственному расположению.

Ячейка не похожа на бульон с различными элементами, плавающими по течению; и при этом это не статическая сущность. Напротив, это организованная матрица с органеллами, расположенными в определенных зонах, и этот процесс происходит благодаря цитоскелету.

Цитоскелет участвует в движении. Это происходит благодаря моторным белкам. Эти два элемента объединяют и допускают смещения внутри ячейки.

Он также участвует в процессе фагоцитоза (процесс, в котором клетка захватывает частицу из внешней среды, которая может быть или не быть пищей). 

Цитоскелет позволяет физически и биохимически связать клетку с ее внешней средой. Эта роль соединителя позволяет формировать ткани и соединения клеток..

Структура и компоненты

Цитоскелет состоит из трех различных типов филаментов: актина, промежуточных филаментов и микротрубочек..

В настоящее время предлагается новый кандидат в качестве четвертой цепи цитоскелета: септина. Далее подробно описывается каждая из этих частей:

Актиновые филаменты

Актиновые филаменты имеют диаметр 7 нм. Они также известны как микрофиламенты. Мономеры, из которых состоят нити, представляют собой частицы в форме шара.

Хотя они являются линейными структурами, они не имеют форму стержня: они вращаются вокруг своей оси и напоминают пропеллер. Они связаны с рядом специфических белков, которые регулируют их поведение (организация, местоположение, длина). Существует более 150 белков, способных взаимодействовать с актином.

Крайности могут быть дифференцированы; один называется плюсом (+), а другой минус (-). Из-за этих крайностей нить может расти или сокращаться. Полимеризация заметно быстрее, в крайнем случае; для того, чтобы произошла полимеризация, требуется АТФ.

Актин также может быть мономером и быть свободным в цитозоле. Эти мономеры связаны с белками, которые препятствуют их полимеризации.

Актиновые филаментные функции

Актиновые филаменты играют роль, связанную с движением клеток. Они позволяют различным типам клеток, как одноклеточных, так и многоклеточных организмов (например, клетки иммунной системы), перемещаться в окружающей среде..

Актин хорошо известен своей ролью в сокращении мышц. Вместе с миозином они сгруппированы в саркомеры. Обе структуры делают возможным это АТФ-зависимое движение.

Промежуточные нити

Приблизительный диаметр этих нитей составляет 10 мкм; отсюда и название «промежуточный». Его диаметр является промежуточным по отношению к двум другим компонентам цитоскелета.

Каждая нить структурирована следующим образом: головка в форме шара на N-конце и хвост с аналогичной формой на конце углерода. Эти концы связаны друг с другом линейной структурой, образованной альфа-спиралями.

Эти «веревки» имеют шаровые головки, которые имеют свойство наматываться на другие промежуточные нити, создавая более толстые переплетенные элементы..

Промежуточные филаменты расположены по всей клеточной цитоплазме. Они распространяются на мембрану и часто прикрепляются к ней. Эти нити также находятся в ядре, образуя структуру, называемую «ядерный лист».

Эта группа подразделяется на подгруппы промежуточных филаментов:

- Кератиновые нити.

- Нити виментина.

- нейрофиламентов.

- Ядерные листы.

Функция промежуточных нитей

Это чрезвычайно прочные и стойкие элементы. Фактически, если мы сравним их с двумя другими нитями (актином и микротрубочками), промежуточные волокна приобретают стабильность.

Благодаря этому свойству его основной функцией является механическая, противостоящая клеточным изменениям. Они встречаются в изобилии в типах клеток, которые подвергаются постоянному механическому стрессу; например, в нервных, эпителиальных и мышечных клетках.

В отличие от двух других компонентов цитоскелета, промежуточные нити не могут быть собраны и расположены на их полярных концах.

Они представляют собой жесткие конструкции (чтобы выполнять свою функцию: опора клетки и механическая реакция на напряжение), а сборка нитей является процессом, зависящим от фосфорилирования..

Промежуточные филаменты образуют структуры, называемые десмосомами. Вместе с рядом белков (кадгеринов) эти комплексы создаются, которые образуют связи между клетками.

микротрубочки

Микротрубочки - это полые элементы. Они являются крупнейшими нитями, которые составляют цитоскелет. Диаметр микротрубочек во внутренней его части составляет около 25 нм. Длина довольно изменчива, в диапазоне от 200 нм до 25 мкм.

Эти нити незаменимы во всех эукариотических клетках. Они возникают (или рождаются) из небольших структур, называемых центросомами, и оттуда простираются до краев клетки, в отличие от промежуточных нитей, которые распространяются по всей клеточной среде..

Микротрубочки состоят из белков, называемых тубулинами. Тубулин представляет собой димер, образованный двумя субъединицами: α-тубулин и β-тубулин. Эти два мономера связаны нековалентными связями.

Одной из ее наиболее важных характеристик является способность расти и укорачиваться, будучи достаточно динамичными структурами, как в актиновых филаментах..

Два конца микротрубочек можно отличить друг от друга. Поэтому сказано, что в этих нитях есть «полярность». На каждом конце, называемом более положительным и менее или отрицательным, происходит процесс самосборки.

Этот процесс сборки и деградации нити приводит к явлению "динамической нестабильности".

Функция микротрубочек

Микротрубочки могут образовывать очень разнообразные структуры. Они участвуют в процессах клеточного деления, образуя митотический веретен. Этот процесс помогает каждой дочерней клетке иметь одинаковое количество хромосом.

Они также образуют кнутоподобные придатки, используемые для подвижности клеток, такие как реснички и жгутики.

Микротрубочки служат в качестве путей или «дорог», по которым движутся различные белки, которые имеют транспортную функцию. Эти белки подразделяются на два семейства: кинезины и динеины. Они могут путешествовать на большие расстояния внутри клетки. Транспортировка на короткие расстояния обычно осуществляется на актине.

Эти белки являются «пешеходами» дорог, образованных микротрубочками. Его движение напоминает довольно прогулку по микротрубочке.

Транспортировка включает в себя перемещение различных типов элементов или продуктов, таких как везикулы. В нервных клетках этот процесс хорошо известен, потому что нейротрансмиттеры выделяются в пузырьки.

Микротрубочки также участвуют в мобилизации органелл. В частности, аппарат Гольджи и эндосплазматический ретикулум зависят от этих нитей, чтобы занять их правильное положение. В отсутствие микротрубочек (в экспериментально мутированных клетках) эти органеллы заметно меняют свое положение.

Другие последствия цитоскелета

В бактериях

В предыдущих разделах был описан цитоскелет эукариот. Прокариоты также имеют сходную структуру и имеют компоненты, аналогичные трем волокнам, которые составляют традиционный цитоскелет. К этим нитям мы добавляем одну из наших собственных принадлежностей к бактериям: группу MinD-ParA.

Функции цитоскелета у бактерий очень похожи на функции, которые они выполняют у эукариот: поддержка, деление клеток, поддержание формы клеток, среди других.

При раке

Клинически компоненты цитоскелета связаны с раком. Поскольку они вмешиваются в процессы деления, они считаются «мишенями», чтобы иметь возможность понимать и атаковать неконтролируемое развитие клеток.

ссылки

  1. Альбертс Б., Брей Д., Хопкин К., Джонсон А., Льюис Дж., Рафф М., ... и Уолтер П. (2013). Основная клеточная биология. Гирлянда Наука.
  2. Fletcher, D.A. & Mullins, R.D. (2010). Клеточная механика и цитоскелет. природа, 463(7280), 485-492.
  3. Холл А. (2009). Цитоскелет и рак. Отзывы о раке и метастазировании, 28(1-2), 5-14.
  4. Мозли, Дж. Б. (2013). Расширенный вид эукариотического цитоскелета. Молекулярная биология клетки, 24(11), 1615-1618.
  5. Мюллер-Эстерл, В. (2008). Биохимия. Основы медицины и наук о жизни. Я поменял.
  6. Shih, Y.L. & Rothfield, L. (2006). Бактериальный цитоскелет. Микробиология и Молекулярная Биология Обзоры, 70(3), 729-754.
  7. Silverthorn Dee, U. (2008). Физиология человека, комплексный подход. Панамериканская медицинская 4-е издание. Bs As.
  8. Свиткина Т. (2009). Визуализация компонентов цитоскелета с помощью электронной микроскопии. в Методы и протоколы цитоскелета (стр. 187-06). Humana Press.