Гидроксид бериллия (Be (OH) 2) химическое строение, свойства и применение



гидроксид бериллия представляет собой химическое соединение, состоящее из двух молекул гидроксида (ОН) и молекулы бериллия (Ве). Его химическая формула Be (OH)2 и он характеризуется как амфотерный вид. Как правило, он может быть получен в результате реакции между моноксидом бериллия и водой в соответствии со следующей химической реакцией: BeO + H2O → Be (OH)2

С другой стороны, это амфотерное вещество имеет молекулярную конфигурацию линейного типа. Однако могут быть получены различные структуры гидроксида бериллия: альфа и бета форма, как минеральная, так и в паровой фазе, в зависимости от используемого метода..

индекс

  • 1 Химическая структура
    • 1.1 Бериллий гидроксид альфа
    • 1.2 Бета-бериллиевый гидроксид
    • 1.3 Гидроксид бериллия в минералах
    • 1.4 Пар бериллиевого гидроксида
  • 2 свойства
    • 2.1 Внешний вид
    • 2.2 Термохимические свойства
    • 2.3 Растворимость
    • 2.4 Риски, связанные с воздействием
  • 3 использования
  • 4 Получение
    • 4.1 Получение металлического бериллия
  • 5 ссылок

Химическая структура

Это химическое соединение может быть найдено четырьмя различными способами:

Бериллий гидроокись альфа

При добавлении любого основного реагента, такого как гидроксид натрия (NaOH), к раствору соли бериллия, получается альфа (α) форма гидроксида бериллия. Пример показан ниже:

2NaOH (разбавленный) + BeCl2 → Be (OH)2↓ + 2NaCl

2NaOH (разбавленный) + BeSO4 → Be (OH)2↓ + Na2SW4

Бета-гидроксид бериллия

Вырождение этого альфа-продукта формирует метастабильную тетрагональную кристаллическую структуру, которая через длительный период времени превращается в ромбическую структуру, называемую бета-гидроксидом бериллия (β).

Эта бета-форма также получается в виде осадка из раствора бериллия натрия гидролизом в условиях, близких к температуре плавления..

Гидроксид бериллия в минералах

Хотя это не обычно, гидроксид бериллия встречается как кристаллический минерал, известный как бехоит (называемый таким образом в связи с его химическим составом).

Встречается в гранитных пегматитах, образующихся при превращении гадолинита (минералов группы силикатов) в вулканические фумаролы..

Этот относительно новый минерал был впервые обнаружен в 1964 году и в настоящее время обнаружен только в гранитных пегматитах, расположенных в штатах Техас и Юта в Соединенных Штатах..

Паровая гидроокись бериллия

При температуре выше 1200 ° C (2190 ° C) в паровой фазе существует гидроксид бериллия. Получается в результате реакции между водяным паром и оксидом бериллия (BeO).

Аналогично, полученный пар имеет парциальное давление 73 Па, измеренное при температуре 1500 ° С..

свойства

Гидроксид бериллия имеет молярную массу или приблизительную молекулярную массу 43,0268 г / моль и плотность 1,92 г / см.3. Его температура плавления находится при температуре 1000 ° С, при которой начинается его разложение..

В качестве минерала, Be (OH)2 (Behoita) имеет твердость 4, а его плотность составляет 1,91 г / см.3 и 1,93 г / см3.

внешний вид

Гидроксид бериллия представляет собой белое твердое вещество, которое в своей альфа-форме имеет желатиновый и аморфный вид. С другой стороны, бета-форма этого соединения имеет четко выраженную орторомбическую и стабильную кристаллическую структуру..

Можно сказать, что морфология минерала Be (OH)2 он разнообразен, потому что его можно найти в виде ретикулярных кристаллов, древесных или сферических агрегатов. Точно так же это прибывает в белый, розовый, голубоватый и даже бесцветный и с жирным стекловидным блеском.

Термохимические свойства

Энтальпия образования: -902,5 кДж / моль

Энергия Гиббса: -815,0 кДж / моль

Энтропия образования: 45,5 Дж / моль

Теплоемкость: 62,1 Дж / моль

Удельная теплоемкость: 1443 Дж / К

Стандартная энтальпия образования: -20,98 кДж / г

растворимость

Гидроксид бериллия по своей природе амфотерный, поэтому он способен отдавать или принимать протоны и растворять как кислые, так и щелочные среды в кислотно-щелочной реакции с образованием соли и воды..

В этом смысле растворимость Be (OH)2 в воде ограничен продуктом растворимости Kps(H 2 O), что равно 6,92 × 10-22.

Риски подверженности

Законно допустимый предел воздействия на человека (PEL или OSHA) вещества, содержащего гидроксид бериллия, установлен для максимальной концентрации от 0,002 мг / м.3 и 0,005 мг / м3 составляет 8 часов, а для концентрации 0,0225 мг / м3 максимум 30 минут.

Эти ограничения связаны с тем, что бериллий классифицируется как канцерогенный агент типа А1 (канцерогенный агент у людей, на основании количества данных эпидемиологических исследований).

приложений

Использование гидроксида бериллия в качестве сырья для обработки какого-либо продукта очень ограничено (и необычно). Однако это соединение используется в качестве основного реагента для синтеза других соединений и получения металлического бериллия..

получение

Оксид бериллия (BeO) - химическое соединение высокочистого бериллия, наиболее используемое в промышленности. Он характеризуется как бесцветное твердое вещество со свойствами электрической изоляции и высокой теплопроводностью..

В этом смысле процесс его синтеза (по техническому качеству) в первичной промышленности осуществляется следующим образом:

  1. Гидроксид бериллия растворяют в серной кислоте (Н2SW4).
  2. Когда реакцию проводят, раствор фильтруют, так что нерастворимые примеси оксида или сульфата удаляются таким образом..
  3. Фильтрат подвергают выпариванию для концентрирования продукта, который охлаждают до получения кристаллов сульфата бериллия BeSO4.
  4. БеСО4 кальцинируют при определенной температуре от 1100 ° C до 1400 ° C.

Конечный продукт (BeO) используется для изготовления специальных керамических изделий промышленного назначения..

Получение металлического бериллия

При добыче и переработке бериллиевых минералов образуются примеси, такие как оксид бериллия и гидроксид бериллия. Последний подвергается серии превращений до получения металлического бериллия.

Be (OH) реагирует2 с раствором бифторида аммония:

Бе (ОН)2 + 2 (NH4) HF2 → (NH4)2BeF4 + 2 ч2О

(NH4)2BeF4 он подвергается повышению температуры, подвергаясь термическому разложению:

(NH4)2BeF4 → 2NH3 + 2HF + BeF2

Наконец, восстановление фторида бериллия при температуре 1300 ° C магнием (Mg) приводит к металлическому бериллию:

BeF2 + Mg → Be + MgF2

Бериллий используется в металлических сплавах, производстве электронных компонентов, производстве радиационных экранов и окон, используемых в рентгеновских аппаратах..

ссылки

  1. Wikipedia. (Н.Д.). Гидроксид бериллия. Получено с en.wikipedia.org
  2. Холлеман, А. Ф .; Виберг Э. и Виберг Н. (2001). Гидроксид бериллия. Получено из books.google.co.ve
  3. Publishing, M.D. (s.f.). Behoite. Получено из handbookofmineralogy.org
  4. Все реакции. (Н.Д.). Гидроксид бериллия Be (OH)2. Получено с allreactions.com
  5. PubChem. (Н.Д.). Гидроксид бериллия. Получено из pubchem.ncbi.nlm.nih.gov
  6. Уолш, К. А. и Видал, Е. Э. (2009). Бериллий Химия и переработка. Получено из books.google.co.ve