Клеточная дифференциация у животных и растений



дифференцировка клеток это постепенное явление, благодаря которому мультипотенциальные клетки организмов достигают определенных специфических характеристик. Это происходит в процессе разработки, и о физических и функциональных изменениях свидетельствуют. Концептуально дифференциация происходит в три этапа: определение, правильная дифференциация и созревание.

Эти три упомянутых процесса происходят постоянно в организмах. На первом этапе определения происходит присвоение мультипотентных клеток эмбриона определенному типу клеток; например, нервная клетка или мышечная клетка. При дифференцировке клетки начинают выражать характеристики линии.

Наконец, созревание происходит на последних этапах процесса, где приобретаются новые свойства, которые приводят к появлению признаков у зрелых организмов..

Клеточная дифференциация - это процесс, который очень строго и точно регулируется серией сигналов, которые включают гормоны, витамины, специфические факторы и даже ионы. Эти молекулы указывают на начало сигнальных путей внутри клетки.

Возможно, что конфликты возникают между процессами клеточного деления и дифференцировки; поэтому развитие достигает точки, когда распространение должно перестать приводить к дифференциации.

индекс

  • 1 Общая характеристика
  • 2 Дифференцировка клеток у животных
    • 2.1 Включение и выключение генов
    • 2.2 Механизмы, которые производят клетки разных типов
    • 2.3 Модель дифференцировки клеток: мышечная ткань
    • 2.4 Мастер-гены
  • 3 Дифференцировка клеток у растений
    • 3.1 Меристемы
    • 3.2 Роль ауксинов
  • 4 Различия между животными и растениями
  • 5 ссылок

Общие характеристики

Процесс дифференцировки клеток включает в себя изменение формы, структуры и функции клетки в данной линии. Кроме того, это подразумевает сокращение всех потенциальных функций, которые клетка может иметь.

Изменения регулируются ключевыми молекулами между этими белками и специфическими мессенджерами РНК. Клеточная дифференцировка является продуктом контролируемой и дифференциальной экспрессии определенных генов.

Процесс дифференциации не подразумевает потерю исходных генов; то, что происходит, - это репрессия в определенных местах генетического механизма в клетке, которая находится в процессе развития. Клетка содержит около 30000 генов, но экспрессирует только около 8000 или 10000.

Чтобы проиллюстрировать приведенное выше утверждение был поднят следующий эксперимент: возьмите ядро ​​дифференцированной клетки и тело-амфибии, например, клетки слизистой оболочки intestinal- и имплантированный в лягушки яйца, ядро ​​ранее экстрагировали.

Новое ядро ​​обладает всей необходимой информацией для создания нового организма в идеальных условиях; то есть клетки слизистой оболочки кишечника не потеряли ни одного гена при прохождении процесса дифференцировки.

Дифференцировка клеток у животных

Развитие начинается с оплодотворения. Когда образование морулы происходит в процессах развития зародыша, клетки считаются тотипотентными, что указывает на то, что они способны формировать весь организм..

С течением времени морула становится бластулой, и клетки теперь называются плюрипотентными, потому что они могут образовывать ткани организма. Они не могут сформировать целостный организм, потому что они не способны дать начало внезародышевым тканям..

Гистологически основными тканями организма являются эпителиальные, соединительные, мышечные и нервные..

По мере вашего продвижения клетки становятся мультипотентными, потому что они дифференцируются в зрелые и функциональные клетки..

-Specifically у животных в metazoos- есть общий генетический путь, который объединяет развитие онтогенеза группы через ряд генов, которые определяют конкретную картину структур тела, путем контроля идентичности сегментов в передне-задней оси животное.

Эти гены кодируют определенные белки, которые имеют ДНК-связывающую аминокислотную последовательность (гомеобокс в гене, гомодомен в белке).

Включение и выключение генов

ДНК может быть модифицирована химическими агентами или клеточными механизмами, которые влияют на - индуцирует или репрессирует - экспрессию генов..

Есть два типа хроматина, классифицированные в зависимости от их экспрессии или нет: эухроматин и гетерохроматин. Первый организован слабо, и его гены экспрессируются, второй имеет компактную организацию и препятствует доступу к транскрипционному механизму..

Было высказано предположение, что в процессах дифференцировки клеток гены, которые не требуются для этой специфической линии, замалчиваются в форме доменов, состоящих из гетерохроматина..

Механизмы, которые производят клетки разных типов

У многоклеточных организмов существует ряд механизмов, которые продуцируют различные типы клеток в процессах развития, такие как сегрегация цитоплазматических факторов и клеточная коммуникация..

Сегрегация цитоплазматических факторов включает неравномерное разделение элементов, таких как белки или РНК-мессенджер, в процессах клеточного деления..

С другой стороны, сотовая связь между соседними клетками может стимулировать дифференциацию нескольких типов клеток..

Такой процесс происходит при образовании глазных пузырьков, когда они встречаются с эктодермой области головного мозга и вызывают утолщение, которое образует пластинки хрусталика. Они сгибаются к внутренней области и формируют линзу.

Модель дифференцировки клеток: мышечная ткань

Одной из наиболее описанных моделей в литературе является развитие мышечной ткани. Эта ткань сложна и состоит из клеток с несколькими ядрами, чья функция заключается в сокращении.

Мезенхимные клетки дают начало миогенным клеткам, которые, в свою очередь, дают начало зрелой скелетной мышечной ткани..

Для того чтобы этот процесс дифференцировки начался, должны присутствовать определенные факторы дифференцировки, которые предотвращают S-фазу клеточного цикла и действуют как генные стимуляторы, которые вызывают изменение.

Когда эти клетки получают сигнал, он инициирует преобразование в направлении миобластов, которые не могут подвергаться процессам деления клеток. Миобласты экспрессируют гены, связанные с сокращением мышц, например, кодирующие белки актина и миозина.

Миобласты могут сливаться друг с другом и образовывать миотубу с более чем одним ядром. На этой стадии происходит производство других белков, связанных с сокращением, таких как тропонин и тропомиозин.

Когда ядра движутся к периферической части этих структур, они считаются мышечным волокном.

Как описано, у этих клеток есть белки, связанные с сокращением мышц, но не хватает других белков, таких как кератин или гемоглобин.

Мастер-гены

Дифференциальная экспрессия в генах находится под контролем «мастер-генов». Они находятся в ядре и активируют транскрипцию других генов. Как следует из названия, являются ключевыми факторами, которые отвечают за контроль других генов, направляющих их функции.

В случае дифференцировки мышц специфическими генами являются те, которые кодируют каждый из белков, участвующих в сокращении мышц, а главные гены MyoD и Myf5.

Когда регуляторные мастер-гены отсутствуют, субтермальные гены не экспрессируются. Напротив, когда присутствует мастер-ген, экспрессия генов-мишеней является принудительной.

Существуют главные гены, которые направляют дифференцировку нейронов, эпителиальных, сердечных, среди других.

Дифференцировка клеток у растений

Как и у животных, развитие растений начинается с образования зиготы внутри семени. Когда происходит первое деление клетки, возникают две разные клетки.

Одной из характеристик развития растений является непрерывный рост организма благодаря постоянному присутствию клеток, которые имеют эмбриональный характер. Эти регионы известны как меристемы и являются органами вечного роста..

Пути дифференцировки дают начало трем тканевым системам, присутствующим в растениях: протодерме, которая включает дермальные ткани, основные меристемы и замещение.

Продукт отвечает за возникновение сосудистой ткани в растении, образованной ксилемой (переносчик воды и растворенных солей) и флоэмой (переносчик сахаров и других молекул, таких как аминокислоты)..

меристемы

Меристемы расположены на кончиках стеблей и корней. Таким образом, эти клетки дифференцируются и дают начало различным структурам, из которых состоят растения (листья, цветы и др.).

Клеточная дифференциация цветочных структур происходит в определенный момент развития, и меристема становится «соцветием», которое, в свою очередь, формирует цветочные меристемы. Отсюда возникают цветочные кусочки, состоящие из чашелистика, лепестков, тычинок и ковров..

Эти клетки характеризуются наличием небольшого размера, кубовидной формы, тонкой, но гибкой клеточной стенки и цитоплазмы с высокой плотностью и многочисленными рибосомами..

Роль ауксинов

Фитогормоны играют роль в явлениях дифференцировки клеток, особенно ауксины.

Этот гормон влияет на дифференцировку сосудистой ткани в стволе. Эксперименты показали, что применение ауксинов в ране приводит к образованию сосудистой ткани.

Точно так же ауксины связаны со стимуляцией развития сосудистых клеток камбия..

Различия между животными и растениями

Процесс дифференцировки и развития клеток у растений и животных не происходит одинаково.

У животных должны происходить движения клеток и тканей, чтобы организмы приобретали трехмерную конформацию, которая их характеризует. Кроме того, клеточное разнообразие гораздо больше у животных.

Напротив, растения не имеют периодов роста только на ранних стадиях жизни человека; они могут увеличить свои размеры на всю жизнь овоща.

ссылки

  1. Кэмпбелл, Н. А. и Рис, Дж. Б. (2007). биология. Ed. Panamericana Medical.
  2. Cediel, J.F., Cárdenas, M.H., & García, A. (2009). Руководство по гистологии: Основные ткани. Университет Росарио.
  3. Холл, J.E. (2015). Гайтон и Холл, учебник по медицинской физиологии, электронная книга. Elsevier Health Sciences.
  4. Паломеро Г. (2000). Уроки эмбриологии. Университет Овьедо.
  5. Wolpert, L. (2009). Принципы развития. Ed. Panamericana Medical.