Градиент потенциальных характеристик, как его рассчитать и пример



градиент потенциала является вектором, который представляет отношение изменения электрического потенциала по отношению к расстоянию в каждой оси декартовой системы координат. Таким образом, вектор градиента потенциала указывает направление, в котором скорость изменения электрического потенциала больше, в зависимости от расстояния.

В свою очередь, модуль градиента потенциала отражает скорость изменения электрического потенциала в определенном направлении. Если значение этого известно в каждой точке пространственной области, то электрическое поле может быть получено из градиента потенциала.

Электрическое поле определяется как вектор, с которым оно имеет определенное направление и величину. Определяя направление, в котором электрический потенциал уменьшается быстрее, удаляясь от контрольной точки, и деля это значение на пройденное расстояние, получается величина электрического поля..

индекс

  • 1 Характеристики
  • 2 Как рассчитать?
  • 3 Пример
    • 3.1 Упражнение
  • 4 Ссылки

черты

Градиент потенциала представляет собой вектор, ограниченный конкретными пространственными координатами, который измеряет отношение изменения между электрическим потенциалом и расстоянием, пройденным этим потенциалом. 

Наиболее выдающиеся характеристики градиента электрического потенциала подробно описаны ниже:

1- Потенциальный градиент - это вектор. Следовательно, он имеет определенную величину и направление.

2- Поскольку потенциальный градиент является вектором в пространстве, он имеет величины, адресованные по осям X (ширина), Y (высокая) и Z (глубина), если в качестве эталонной системы координат берется декартова система координат.

3- Этот вектор перпендикулярен эквипотенциальной поверхности в точке, в которой оценивается электрический потенциал.

4- Вектор градиента потенциала направлен в направлении максимального изменения функции электрического потенциала в любой точке..

5- Модуль градиента потенциала равен модулю, полученному из функции электрического потенциала по отношению к расстоянию, пройденному в направлении каждой из осей декартовой системы координат..

6- Потенциальный градиент имеет нулевое значение в стационарных точках (максимальная, минимальная и седловая точки).

7- В международной системе единиц (СИ) единицами измерения градиента потенциала являются вольт / метры.

8. Направление электрического поля такое же, в котором электрический потенциал уменьшает свою величину быстрее. В свою очередь, градиент потенциала указывает в направлении, в котором потенциал увеличивает свое значение по отношению к изменению положения. Тогда электрическое поле имеет то же значение градиента потенциала, но с противоположным знаком.

Как рассчитать?

Разность электрических потенциалов между двумя точками (точка 1 и точка 2) определяется следующим выражением:

где:

V1: электрический потенциал в точке 1.

V2: электрический потенциал в точке 2.

E: величина электрического поля.

Ѳ: угол наклона вектора электрического поля, измеренного относительно системы координат.

Выражая указанную формулу дифференциальным способом, получаем следующее:


Коэффициент E * cos (Ѳ) относится к модулю компонента электрического поля в направлении dl. Пусть L - горизонтальная ось плоскости отсчета, тогда cos (Ѳ) = 1, вот так:

Далее, отношение между изменением электрического потенциала (dV) и изменением пройденного расстояния (ds) является модулем градиента потенциала для упомянутого компонента. 

Из этого следует, что величина градиента электрического потенциала равна компоненте электрического поля в направлении исследования, но с противоположным знаком.

Однако, поскольку реальная среда является трехмерной, градиент потенциала в данной точке должен быть выражен как сумма трех пространственных компонентов на осях X, Y и Z декартовой системы..

Разбивая вектор электрического поля на три прямоугольных компонента, мы получаем следующее:

Если в плоскости имеется область, в которой электрический потенциал имеет одинаковое значение, частная производная этого параметра по каждой из декартовых координат будет равна нулю.

Таким образом, в точках, которые находятся на эквипотенциальных поверхностях, напряженность электрического поля будет иметь нулевую величину.

Наконец, вектор градиента потенциала может быть определен как точно такой же вектор электрического поля (по величине) с противоположным знаком. Таким образом, мы имеем следующее:

пример

Из приведенных выше расчетов необходимо:

Теперь, прежде чем определять электрическое поле как функцию градиента потенциала или наоборот, сначала необходимо определить направление, в котором разность электрических потенциалов растет..

После этого определяется коэффициент изменения электрического потенциала и изменения пройденного расстояния..

Таким образом, мы получаем величину соответствующего электрического поля, которая равна величине градиента потенциала в этой координате.

осуществление

Есть две параллельные пластины, как показано на следующем рисунке.

Шаг 1

Направление роста электрического поля на декартовой системе координат определяется.

Электрическое поле растет только в горизонтальном направлении, учитывая расположение параллельных пластин. Следовательно, можно сделать вывод, что компоненты градиента потенциала на оси Y и оси Z равны нулю..

Шаг 2

Данные, представляющие интерес различаются.

- Разность потенциалов: dV = V2 - V1 = 90 В - 0 В => dV = 90 В.

- Разница в расстоянии: дх = 10 сантиметров.

Чтобы обеспечить соответствие единиц измерения, используемых в соответствии с Международной системой единиц, величины, не выраженные в СИ, должны быть соответственно преобразованы. Таким образом, 10 сантиметров равны 0,1 метра, и, наконец, dx = 0,1 м.

Шаг 3

Величина вектора градиента потенциала рассчитывается соответствующим образом.

ссылки

  1. Электричество (1998). Encyclopædia Britannica, Inc. Лондон, Великобритания. Получено с: britannica.com
  2. Потенциальный градиент (с.ф.). Национальный автономный университет Мексики. Мехико, Мексика. Получено от: professors.dcb.unam.mx
  3. Электрическое взаимодействие Восстановлено: matematicasypoesia.com.es
  4. Потенциальный градиент (s.f.). Получено с: circuitglobe.com
  5. Связь между потенциалом и электрическим полем (с.ф.). Технологический институт Коста-Рики. Картаго, Коста-Рика. Получено из: repositoriotec.tec.ac.cr
  6. Википедия, Свободная энциклопедия (2018). Gradiente. Получено с: en.wikipedia.org